QESIA. Move to Modern L3 Fabric While Supporting Legacy L2 Workloads

AOS 2.0 VXLAN Feature Brief

> Turnkey Vendor-Agnostic, Au’ronomoUs

| Lifecyale Operohons

i

As a network engineer, you need to move to modern L3 fabric for agility and scale, but are held back by
many L2 workloads (virtual or physical). You need to easily stretch your L2 segments across the fabric using
VXLAN, but are stuck with three options to manage (design, implement, operate) L2 workloads on a
physical IP fabric (underlay):

1. Manual, without using a SDN controller

2. OVSDB, using a SDN confroller (e.g. Cisco ACI, VMware NSX or Juniper Contrail)

3. Ethernet VPN (EVPN), using vendor-specific control plane technology to allow hosts (bare-metal and
VMs) to be placed anywhere in a network, and connected to the same logical L2 overlay network.

Manual:
e Pros: Multi-vendor standardards based technology. No controller lock-in. Ability and flexibility to
invest or add a SDN confroller later.
e Cons: There are a lot of manual, error-prone, vendor-specific, fime-consuming steps involved.

SDN Controller::

e Pros: Ability to connect physical ports and bare metal servers using high speed underlay switch with
10/25/40/100G interfaces. Leverage the same interface used to configure virtual networking
infrastructure.

e Cons: You need to invest in a SDN controller that has certified integration with the underlay switch.
Assumes the majority of the workload is already virtualized.

QESIA. Move to Modern L3 Fabric While Supporting Legacy L2 Workloads

AOS 2.0 VXLAN Feature Brief

EVPN+VXLAN:
e Pros: Standards based technology
e Cons: Complex configurations with different vendor-specific deployment types. Interoperability
challenges between vendors.

How AOS (Apsira® Operating System) makes the lifecycle operations of VXLAN easy

AOS provides turnkey, vendor-agnostic, autonomous lifecycle automation of VXLAN, spanning design,
implementation, and operations — for any virtual, container-based, and bare-metal workloads.

For example, the networking team can automate the configurations and verifications of VXLAN on an
IP fabric, without using a SDN controller, or EVPN. Without AOS, these are the manual VXLAN
provisioning steps you will have to perform. With AQS, these steps are completely automated:

A Create VXLAN Network Identifier (VNI) resource pool

A Configure VTEP VNI interfaces for applying connectivity and isolation policy

A Configure VTEP source interfaces for VIEP-to-VTEP communication

4 Attach hosts (virtual or bare-metal) that need to be on certain VLANSs

4 Bind different VLANs info a contiguous, stretched L2 domain over VXLAN tunnel

A Configure VXLAN routing between VXLAN and VXLAN or VLAN domains (coming soon)
A Verify all configurations

1 Figure out what telemetry to gather, in order to validate the operating state of the VXLAN tunnels
and underlay fabric meet your desired service expectations
A Gather the telemetry you need

4 Continuously monitor telemetry you gather, in order to ensure the operating state of the VXLAN
funnels and underlay fabric meet your desired service expectations

The following screenshot shows an example of your VXLAN intent during the design phase. In this case,
you want a select group of servers on different VLANs (in different racks) placed onto the same VXLAN

QESIA. Move to Modern L3 Fabric While Supporting Legacy L2 Workloads

AOS 2.0 VXLAN Feature Brief

segment (same L2 domain).

Endpoints

Views (® Topology Nodes Legend @ VLAN Tagged @ Untagged
wimmgc;m;;e:uzmmfi ﬂ;mg ;;;n’nm 4. leafl ‘ 12_hpc_03_leaf 12_hpc_01_leaf 12_hpc_09_leaf
| [[mclag_compute 02 leafz]3 [mdag compute_04_leaf2] ‘
s 9 o o ©
(-2server36 | | .2_server31 | [-4 server36 | |[.4server14 | [3server6 ||[.3server02] [.1server0?]| [.1serveri5] [.9. sewerﬂ?] [#_server1o |
(-2server28 | | [.2.server39 | [.4_server10 | |[4server37 | [.3serveri]|[.3serveri0] [.1server03 || [.1serveria] [.9_server11]|[.9 server02]
(2server29 | | [.2.server13 | [A_server30 | |[.4serverds | [.3server09 || [.3server0d | [.1 server07 || [.1server02z] [.9_server09 ||[.9 server0s |
[.2_server 15 96.2, ;;;;; 10 ‘ [4_server31 Q1§ 4 server23] [.:Lsme.m?é _3_server03] [1_server1l] [1_serveri0] [__v,s.meru | [_.9,;.meru]
[2 _server03 96 2_serveril \ [4_server35 96 4_server: 26] [.Jiserverﬂi?,é 3_server12] [1_serverié] [17§trwtrﬂi] [.,9,smero5 | [,,sgsmeru]
[2server3 Q1L 2 server0s | [A_serverzs | | [4servero4 | [3server15 QL 3 server08 | [.1_serveros || [.1server13 | [.9_serveros | | .9 server01 |
[C2servera2 P 2 serverzs | [Aserver0s | | [Asserverds | [3oserver06 | | [Bserverot] (A server05 Q1 A serveriz | (L9 serverts Q1 9 serverts |
[2 serveraa Q15 2 servers7 | 4 server1d | | [Ca_server1s | [3server07 | | [3servertd] [(iserver08 Q5.1 sevverﬂbJ [9. serveroa‘?{, 9 server04 |
(-2serveraa | [[.2server12 | [4_serveros | | [.4_serveros]
(-2server02 | [[.2_server07 | [4_serveri2] | [.4_server24]
(-2server3s | | [2serverd0 | [A4_server22] |[L4 serverd0 |
(2server06 | | [2server17 | [A server01 | | [4 server09
[.2_server01] [2_server30] [4_server18 [4_server25

(2server08 | | [.2.server09 | [4_serverts

]
]]
]]
]| [Aserver20 |
(-2server0s | | [2server24 | [A_server19 | | [.4 server08 |
))
]]
]]

l.Z_serverMJ [..E_Serveri'!] [.A_seweru [4_server32

[.2_5erver27J [.2_5e~er22| [.A_sewem‘i [4_server11

[.2_serve126] [.2_serve116] [4_server27 [4_server17
(-2serverzo | [[2server18 | [4_server02] | [4_server07
(2server19 | | [2server23] [A_server21 | | [L4 server33 |

Figure 1: Automated VXLAN Design

Additionally, in the figure above, some of the endpoints are provisioned to support “tagged” interfaces
(aqua) while others are provisioned for “untagged” (purple). AOS also manages the automation and
intent validation of these endpoints.

The following screenshot shows an example of closed-loop validation. In this case, all route
expectations for the VTEPs on “racktype 2_1_leaf” have been validated.

Qpstia.

@ /Blueprints / rack-based-blueprint-1a49e26d / racktype2_1_leaf

A Staged

B Physical

Config Interface

Anomalies

Destination $

0.0.0.0/0

172.16.0.0/32

172.16.0.1/32

172.16.0.12/31

172.16.0.14/31

172.16.0.16/31

& Properties

Expected

State &

up

up

up

up

up

up

Next hops &

0 Active

@& Telemetry

-

172.16.0.25/32

172.16.0.10/32
172.16.0.18/32

172.16.0.10/32
172.16.0.18/32

172.16.0.10/32
172.16.0.18/32
172.16.0.18/32

&2 B2 &2 @ B3

MAC LLDP BGP

LAG MLAG Route Counters ARP

Actual
State & Next hops &
up 172.16.0.25/32

172.16.0.10/32
172.16.0.18/32

up

" 172.16.0.10/32

172.16.0.18/32
up 172.16.0.10/32
up 172.16.0.18/32
up 172.16.0.18/32

Move to Modern L3 Fabric While Supporting Legacy L2 Workloads

AOS 2.0 VXLAN Feature Brief

Transceivers Utilization

1-150f 15

Status ¢

Last fetched &

7 days ago

7 days ago

7 days ago

7 days ago

7 days ago

7 days ago

Figure 2: Example Of Closed-Loop Validations of VXLAN

Page Size: 25 =

Last modified &

7 days ago

7 days ago

7 days ago

7 days ago

7 days ago

7 days ago

The following screenshot shows an example of closed-loop validation for the entire integrated underlay
and overlay (VXLAN), as a single logical system, across all individual devices.

QESIA. Move to Modern L3 Fabric While Supporting Legacy L2 Workloads

AOS 2.0 VXLAN Feature Brief

Blueprints Devices Design - Resources ~ Platform ~

@ /Blueprints / rack-based-blueprint-1a49e26d

—_— > =) bled
ﬁ Dashboard A Staged == Uncommitted 0 Active

B Physical ¥ Virtual % Anomalies

» Nodes: All » Links: All Selection Anomalies

Views ® Topology Nodes Links Show servers?

Layer: Anomalies: All v
. . Deploy Mode
@ present
& Q p Deployment Status: Discovery
ext_router_6e19t95b p Deployment Status: Service
p Anomalies: All
EE—— =
p Anomalies: BGP
. l Anomalies: Cablin;
EE= E=E=] e — :
p Anomalies: Liveness
:I ‘ p Anomalies: Interface
p Anomalies: Route
Figure 3: Example Of Closed-Loop Validations of Integrated Underlay and Overlay
Summary

AQOS provides turnkey, vendor-agnostic, autonomous lifecycle operations of VXLAN, including design,
implementation, and operations for any virtual, container-based and bare-metal workloads.

Soon for operations, AOS provides vendor-agnostic telemetry and correlation between overlay and
underlay. For example, easy, instant, fabric wide visibility info VXLAN tunnel utilization for all VXLAN
segments configured by AOS on switches. Additionally, AOS provides underlay to overlay correlation
when endpoints/VTEPs are instantiated on hypervisors through integration with:

e |Leading hypervisor and/or overlay controller, and/or
e Leading Cloud Management Platform (CMP)

About Apstra

Apstra® delivers the Apstra Operating System™ (AOS), a new category of networking solution called Intent-Based Network Operating System.
AOS enables an autonomous operational model for the network. AOS is intent-based, closed-loop, and fully autonomous, and enables the
only "Vendor-Agnostic Self-Operating Network™".

For more information, visit www.apstra.com or follow @Apstrainc, or email us at sales@apstra.com.

Engage with Apstra on Twitter, Follow Apstra on LinkedIn, Like Apstra on Facebook

https://twitter.com/ApstraInc
https://www.facebook.com/apstrainc/
https://www.linkedin.com/company/apstra
https://twitter.com/ApstraInc
http://www.apstra.com/
mailto:sales@apstra.com

