
Copyright Apstra, Inc., 2016 - Confidential and Proprietary 1

APSTRA WHITE PAPER

The Apstra Operating System (AOS) 
and The Distributed Systems Challenge in 

Data Center Automation 
David Cheriton, Apstra

INTRODUCTION

You have to admit: The modern data center is an astounding accomplishment in computing. It is 
capable of delivering an enormous level of computational power, storage, and communication with 
cost-efficiency in both CAPEX and OPEX, availability and extensibility that would be unimaginable just 
a few years ago. As a consequence, enterprises are able to deploy applications and services without 
being limited by computational resources. It has spawned a whole new thinking in the design and 
deployment of these application and services under the name of cloud computing. Although you may 
find it a flakey term, the cloud has come to denote the almost limitless computing capacity provided 
by modern data centers, whether as a public cloud or a private cloud.

With computational resources no longer the first-order limiting factor, your organization is likely 
pushed to provide more extensive services and applications, delivering always-on responsive 
interactions with their customers with rapid introduction of new features and services. Whether 
coming from internal innovation or driven by external competitive forces, you cannot ignore this 
trend, and the pace is accelerating. As a consequence, the data center becomes foundational to a 
business. Failures and poor operational practices have direct business consequences. Lack of agility 
and excessive cost are a significant competitive disadvantage. A single typo by an operator in a data 
center can put your company’s name in an (unwelcome) front page article in the Wall Street Journal.

The cost-effective provisioning of this astounding level of computational power is achieved by a 
complex interconnection of commodity servers and increasingly interchangeable switches. The 
diversity of protocols and features available on switches and services makes the configuration of a 
data center a complex endeavor. Moreover, while the initial stand up is challenging, configuration is 
not a one-time thing. You are going to have a continual need to incrementally deploy new servers and 
switches and undeploy others, with frightening opportunities for errors and failures at every stage.

At the same time, components can fail, causing disruption. In fact, at scale, you have to expect that 
something is broken or not working correctly at any given time.

If you are an experienced data center operator, you surely recognize that the “friendly” form of failure 
is when a switch or a server just totally stops working. This form of failure is very evident and can be 
easily handled by deconfiguring this particular node if a quick repair, such as plugging the power 
supply back in (not an uncommon problem), is not feasible. The nastier form of failures manifests 
as transient failures of internal components. A switch is dropping an excessive number of packets 
on a given port or perhaps just dropping packets with specific characteristics. The result is that the 
response time for certain applications goes up significantly, not a hard failure but still unacceptable 
from a business standpoint. You are then confronted with the problem of root causing and remedying 
this “grey-out”.

Therefore, what you need is not just the tools to help configure and reconfigure the data center, but 
also, the means to monitor its operation and detect both subtle and blatant forms of failures. Peter 
Drucker, the famed business consultant, was often quoted as saying “You can’t manage what you 
can’t measure.” We bring this wisdom into our domain by slightly modifying the quote to say, “You 
can’t manage what you can’t monitor.” 

“You can’t manage what you 

can’t monitor.”



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 2

The data center is a highly distributed system. It thus requires a highly distributed system to configure 
and monitor it. Many others dramatically underestimate the distributed system challenge underlying 
data center automation. The automation system itself needs to be responsive, needs to scale, needs 
to gracefully deal with overload, needs to be fault-tolerant, and needs to be secure. It is not adequate 
to just provide various application-specific solutions within the context of the automation software. It 
is also not adequate to pull together a collection of open source point solutions and try to get them 
to interoperate. Let’s make this clear by considering this monitoring challenge first: how to provide 
the necessary telemetry.

DATA CENTER TELEMETRY

How do you monitor the operation of a data center?

A modern data center can produce billions, if not trillions, of events per second. You cannot afford to 
monitor every event. On the other hand, conventional SNMP approaches that poll every 5 minutes 
generally fail to indicate anything about the performance dynamics, proving unhelpful for root 
causing performance degradation type of failures, as mentioned above, unless alerts are triggered.

Because of the huge rate of events, standard techniques of aggregating into counters and other 
statistics, as well as selective reporting of critical of events and alerts are necessary. Nevertheless, 
when you do not know what the next problem will be, it is hard to know what information you will 
need to root cause it. Therefore, more reporting is better than less. This is clearly one of the lessons 
from experience with “big data.”

Thus, a key distributed challenge is providing efficient highly available communication, recording and 
processing of important events from the lowest levels of components in the data center through to 
real-time analysis and alerting, and on to a central repository for detailed big data post-processing. 
This must be done such that it provides low latency between critical situations arising and the 
communication of operator alerts, if not auto-remediation. This must also be done so that it does 
not interfere with the operation of the data center. Additionally, it must deal with overload situations 
when peak demand and failures conspire to produce “event storms.” In fact, it is at the time of peak 
load that failures are more common, and it is at the time of failures and peak load that responsive 
monitoring is most needed. Finally, it must be done such that the telemetry system itself does not fail 
in spite of the overload conditions and failures that are taking place.

Rather than trying to build telemetry-specific solutions from the ground up, so to speak, or trying 
to couple various open-source point solutions, the Apstra Operating System (AOS) relies on an 
underlying distributed operating system infrastructure that properly factors the telemetry service-
specific code from that required to solve these distributed system challenges. This infrastructure is 
discussed next.

AOS DISTRIBUTED OPERATING SYSTEM INFRASTRUCTURE

AOS is based on an innovative distributed systems infrastructure that provides efficient 
communication, distributed processing, fault-tolerance, security, and extensibility. This provides the 
basis for AOS closed-loop monitoring and configuration, distributed across the components of the 
data center.

A key part of the AOS distributed infrastructure is its in-memory database technology.

Rather than trying to build 

telemetry-specific solutions 

from the ground up, so to 

speak, or trying to couple 

various open-source point 

solutions, the Apstra Operating 

System (AOS) relies on 

an underlying distributed 

operating system infrastructure 

that properly factors the 

telemetry service specific 

code from that required to 

solve these distributed system 

challenges.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 3

AOS DISTRIBUTED IN-MEMORY DATABASE

AOS is based on a highly efficient in-memory distributed database technology with built-in replication 
and failure recovery. Events are recorded in each device as well as propagated to nearby instances 
of the relevant partitions of this in-memory database, running on AOS server hosts, from where it 
is replicated as desired. The database is configured to store recent monitoring data. It can also be 
configured to forward this data to a separate big-data processing cluster for off-line analysis.

On server failure affecting this in-memory database, fail-over to a secondary and recovery of 
the primary takes place automatically and in seconds. On disconnection of a device from the 
central database, monitoring continues locally by the AOS device agent, which reconnects and 
resynchronizes with the central system database as soon as possible.

The in-memory database provides automatic incremental replication of state as well as monitoring 
and fail-over of partitions to ensure on-going state availability. It also supports system-wide naming of 
objects and relationships, facilitating meaningful reporting and extensibility.

Under overload, the database automatically coalesces statistics reporting to larger intervals, thereby 
reducing the load. It also prioritizes events and alerts while suppressing duplicates. This coalescence 
and prioritization is built into the in-memory database technology at the lowest levels of the system.

In contrast, other systems attempt to handle overload on a case-by-case application basis for specific 
types of events, but fail to handle overload cases that can occur at lower levels. Also, many of the 
specific application cases are not considered or not handled properly.

The in-memory database technology also allows separate agent processes, on the same host or a 
different host, to get efficient access to selective portions of the real-time state of the data center 
as well as to subscribe to particular state updates and events. These agents can further update the 
central database with derived data, events, and alerts using the same means of update as the device 
reporting. Using this capability, AOS provides real-time analysis of the operational state, including 
closed loop monitoring.

Many other systems treat monitoring as a communication problem, getting events to customer-
provided equipment. However, that puts the entire burden on the customer to deal with state 
maintenance, sharding, overload, and fault recovery.

Some systems attempt to deal with their inefficiency by providing selective reporting of events. That 
is, detailed reporting does not load the system in general because it is only turned on when needed. 
Unfortunately, turning on the detailed reporting when the system is already under severe load tends 
to aggravate the situation, if not cause catastrophic failures. Thus, the capabilities cannot be used at 
precisely the time at which they are most needed.

In contrast, AOS is designed around an “always-on” model of real-time monitoring, with a data 
pipeline from the originating component/device through to real-time storage and processing through 
to bulk off-line storage and processing.

In contrast, AOS is designed 

around an “always-on” model 

of real-time monitoring, with 

a data pipeline from the 

originating component/device 

through to real-time storage 

and processing through to bulk 

off-line storage and processing.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 4

INTEGRATED EFFICIENT PUBLISH-SUBSCRIBE COMMUNICATION

The AOS distributed operating system provides an integrated binary state-oriented publish-subscribe 
protocol for all communication within AOS. By using publish-subscribe, data can flow asynchronously 
and selectively to any portion of the system that requires that data, avoiding the round-trop times and 
overheads of conventional request-response RPC or polling communication. By state-oriented, we 
mean the protocol is designed around specifying state updates, allowing optimization of the protocol 
representation which, in conjunction with its compact binary wire format, allows further reduction in 
communication and processing overhead.

By integrated, we mean the protocol is designed directly into the in-memory database, allowing 
it deliver updates to database state without application intervention, thereby reducing processing 
overhead and update latency. It is used for all interprocess communication, including propagating 
updates from devices to the central database partitions, from primary partitions to secondary 
partitions, and for logging and recovery.

The integrated protocol also allows for graceful handling of overload. Under overload and 
congestion, messages can be dropped while still recording that remotely cached state is now stale, 
later resynchronizing the state as necessary when the load subsides. In doing so, the protocol 
explicitly recognizes that the most recent state is of the greatest value in a real-time system, not 
working off a backlog of old messages, as many systems do.

Many systems use text-based presentations of events, such as JSON, to provide ease of use and 
claimed extensibility. However, this approach incurs significant communication and processing 
overhead throughout the system. In contrast, AOS provides export of event data, in real-time if so 
desired, in a variety of formats including JSON, only incurring this overhead when called for, and only 
on the selected data of interest. These export processes do not impact the rest of the AOS telemetry 
system.

On top of this asynchronous publish-subscribe communication, the AOS distributed infrastructure 
allows applications to optionally use transactions to impose atomicity and synchrony. The 
transactional model proves useful for configuration, but not for telemetry relative to its performance 
overhead. In contrast to this approach, conventional systems provide synchronous communication 
in the form of RPC and polling and then attempt to retrofit an asynchronous event mechanism. Our 
approach is faster, simpler, and leads to more predictable dynamics and graceful recovery during 
overload and failures. It is optimized for the most performance demanding aspect of data center 
automation, namely the telemetry.

DISTRIBUTED SCHEDULING AND PROCESS MANAGEMENT

Providing a distributed in-memory database entails scheduling and running multiple processes across a 
collection of servers. It also entails detecting when one of these processes has failed and restarting it.

The AOS distributed infrastructure provides this capability as a general distributed scheduling and 
process management service. Consequently, other processes, such as those doing telemetry-specific 
processing can be scheduled by the same mechanism. In fact, this service allows third-party and 
customer-specific to be scheduled and monitored as part of the same service.

This scheduling service is implemented using the same in-memory database technology (to store the 
scheduling configuration and status) and base publish-subscribe protocol, minimizing the mechanism 
required to run AOS and providing visibility (through the database) into the operation of this 
scheduler facility. This approach further facilitates extensions to the scheduling, both in terms of the 
state that is maintained, and by additional processing agents that monitor or control the scheduling.

Providing a distributed in-

memory database entails 

scheduling and running multiple 

processes across a collection of 

servers. It also entails detecting 

when one of these processes 

has failed and restarting it. The 

AOS distributed infrastructure 

provides this capability as a 

general distributed scheduling 

and process management 

service.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 5

In contrast, other solutions often handle this process scheduling, monitoring, and restart requirement 
with an application-specific solution or else introduce a separate distributed scheduler with its own 
protocols, database, and performance characteristics. The former forces other processing in the 
system to solve their own scheduling, monitoring, and restart problem. The latter leads to complex 
dependencies and performance problems, particularly with failures and overload.

EVENT REPORTING AND LOGGING

The infrastructure provides an efficient form of event reporting based on the common binary publish-
subscribe protocol, allowing event reporting to work with the in-memory database technology. 
This event reporting is used by the infrastructure itself as well as applications running on top of this 
infrastructure, such as the telemetry, configuration, and verification processes.

This event reporting and logging support allows the AOS applications to efficiently provide detailed 
event reporting integrated with the event reporting of AOS itself, providing visibility and tracking for 
all aspects of AOS.

SECURE OPERATION

The AOS distributed operating system provides a unified authentication and access control basis for 
all applications running on top of it. Thus, one authentication mechanism supports access control on 
all AOS data, configuration, and computing resources. The integrated publish-subscribe protocol 
supports full secure communication between AOS agent processes and the in-memory database, 
tying this communication to principals authenticated by the above mechanism. Consequently, the 
security of AOS is relatively simple to describe yet unified and comprehensive in realization.

Overall, the AOS distributed infrastructure provides a unified platform for running distributed 
applications, supporting telemetry, but also supporting configuration, verification, and auto-
remediation, as discussed next.

TELEMETRY

Running on top of the distributed operating system infrastructure used by AOS, telemetry in itself can 
be considered a distributed application of this distributed operating system. AOS device telemetry 
agents are scheduled on each monitored device, periodically transmitting telemetry data to the 
AOS in-memory database. Additional telemetry agents source data from this in-memory database 
and provide time series presentation, analysis, and alerts in real-time. One or more additional 
agents provide post-processing and storage of the telemetry data in an off-line compute cluster for 
subsequent processing.

This distributed multi-process data pipeline relies on the in-memory database for data persistence, 
the publish-subscribe binary protocol for efficient communication between components, the 
distributed scheduling and process management to execute these processes and to ensure these 
processes continue execution, despite server failures and restarts. Finally, the actual execution of this 
telemetry application can be monitored by the event log mechanism.

The clean separation of the AOS distributed operating system support from this “application” really 
shows benefits by considering the other applications or subsystems that run as part of AOS, as 
considered next.

AOS device telemetry agents 

are scheduled on each 

monitored device, periodically 

transmitting telemetry data to 

the AOS in-memory database. 

Additional telemetry agents 

source data from this in-memory 

database and provide time 

series presentation, analysis, 

and alerts in real-time.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 6

INTENT-BASED CONFIGURATION

Intent-based configuration requires a collection of processes to translate the high-level intent 
specification into a generic configuration based on available resources and then render to device-
specific configuration specifications. At scale, and a diversity of devices, it is not feasible to use a 
monolithic single application process to provide this capability.

AOS uses its distributed infrastructure to structure the configuration rendering as a distributed 
application that stores its state in the in-memory database, makes this state available to other agents 
by the binary publish-subscribe protocol, relies on the distributed scheduler for execution, and 
reports events using the provided event log reporting mechanism. The configuration information with 
its significantly different properties from the telemetry data, is stored in separate partitions from the 
telemetry, allowing clear separation of resources and reliability policies.

As such, configuration is essentially one more application using this distributed infrastructure, and is 
thereby able to run on the same pool of system resources in harmony with the telemetry subsystem. 

CLOSED LOOP TELEMETRY AND VERIFICATION

A key feature of AOS is providing closed-loop telemetry, namely verifying that the data center is 
operating according to the specified configuration. A variety of incidents can cause departure from the 
specified configuration, including device failure, cables being misconfigured, local console changes, 
and others.

In AOS, verification is implemented as a set of separate agent processes that monitor the telemetry 
data as it is stored into the central in-memory database, check this data for consistency with the 
intent-specified configuration, and provide alerts on discrepancies between the observed and the 
intended.

The in-memory database and underlying publish-subscribe protocol make the data required for this 
verification available with low overhead and latency to the verification processes. The distributed 
process scheduling, monitoring, and restart capability ensures that the verification is running 
continuously with the same availability as the in-memory database capability.

AUTO-REMEDIATION

The holy grail of data center automation is auto-remediation, the ability to automatically diagnose and 
remedy a situation revealed by the telemetry. However, auto-remediation is not a single feature that 
can be realized within any foreseeable time frame. Different problem scenarios may require different 
diagnosis logic and entail different remediation steps. Thus, there is a need to tackle one problem 
after another. For example, a simple case of a device losing its configuration can be auto-remedied by 
reloading the generated configuration. However, incorrect behavior of a device that appears to have 
the correct configuration requires more in-depth diagnosis and requires physical device reboot or 
replacement.

Auto-remediation is also not without its risks. Failure scenarios can be complex and difficult to 
diagnose. Incorrect diagnosis can clearly lead to incorrect remediation, making the situation worse. 
Moreover, diagnosis and remediation can require complex, evolving software that is infeasible to 
stabilize to the same level as the rest of the system.

AOS executes auto-remediation as separate processes, isolated from the other subsystems, yet with 
the required visibility into the state of the data center through the distributed in-memory database. 
Again, the auto-remediation relies on the AOS distributed operating system infrastructure to be 
scheduled, restarted, and properly monitored.

AOS uses its distributed 

infrastructure to structure 

the configuration rendering 

as a distributed application 

that stores its state in the 

in-memory database, makes 

this state available to other 

agents by the binary publish-

subscribe protocol, relies on 

the distributed scheduler for 

execution, and reports events 

using the provided event log 

reporting mechanism.

A key feature of AOS is 

providing closed-loop 

telemetry, namely verifying that 

the data center is operating 

according to the specified 

configuration.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 7

While the initial form of auto-remediation in AOS is modest, the distributed operating system 
infrastructure provides the means to evolve and scale this capability over time without compromising 
the availability, responsiveness or security of the rest of AOS.

This AOS emphasis on extensibility not only allows Apstra to provide responsive feature velocity as 
we go forward, but also allows third party and customer extensibility, again without compromising the 
operational properties of AOS.

THIRD PARTY AND CUSTOMER EXTENSIBILITY

While Apstra is working hard to extend AOS to meet various customer requirements, we recognize 
that third parties and customers themselves can significantly contribute to solving aspects of the data 
center automation problem. Moreover, specific customers may have unique configuration practices 
and unique monitoring requirements that necessitate customization of AOS.

To this end, the AOS distributed operating system infrastructure supports introducing customer 
or third-party specified processes using the same facilities as used by the core AOS subsystems 
described above, refined with extensibility features oriented towards customer usage.

Consequently, customers are not locked into a particular AOS model of data center operation, 
but can treat AOS as a platform on which to customize to their unique needs and practices.  The 
telemetry, configuration, verification and auto-remediation subsystems provided by AOS are highly 
configurable and minimize the specialization and coding that each customer has to perform. However, 
the AOS distributed operating system infrastructure enables this customer extensibility while 
preserving the protection, security and functionality of the rest of the AOS core operation.

...customers are not locked into 

a particular AOS model of data 

center operation, but can treat 

AOS as a platform on which 

to customize to their unique 

needs and practices.



Copyright Apstra, Inc., 2016 - Confidential and Proprietary 8

CONCLUDING REMARKS

Data center automation means automating management. While automatically configuring all 
the devices in the data center from a high-level specification is important and complicated to do 
right, more challenging is monitoring all these devices to ensure they remain properly configured 
and operating correctly. In contrast to other purported solutions in this space that focus first on 
configuration, AOS starts from the premise that monitoring, and thus telemetry, is foundational, as 
Peter Drucker essentially recognized years ago.

Rather than building this telemetry support as a specialized solution from the ground up, AOS 
recognizes there is a significant distributed systems challenge underlying providing telemetry.

Consequently, AOS is built on a scalable real-time distributed infrastructure that provides high 
availability, low latency response, security and extensibility well-suited for distributed event 
monitoring, but more broadly applicable. The key components of this infrastructure are:

• In-memory distributed database

• Integrated efficient secure publish-subscribe binary-level communication

• Distributed scheduling and process management

• System event reporting and logging

• Distributed authentication and access control

The result is a unified platform on which real-time telemetry is provided as a subsystem or application, 
with low latency response, high availability, security, and extensibility, yet with the telemetry aspect 
properly factored from these underlying distributed services. Conceptually, there is a full-function 
distributed operating system on top of which telemetry services run as one set of applications. Thus, 
rather than ad hoc application-specific solutions to failures, overload, and security, there is one unified 
solution in this distributed operating system using a unified pool of computing resources.

With this strong foundation, data center configuration from high-level intent can be provided as yet 
another distributed application, co-existing with telemetry. This configuration application uses the 
same means to handle data replication, fault recovery, scheduling, and security as used by telemetry.

Furthermore, verification applications are provided running on the same platform, coupling telemetry 
to the intent-based configuration, and ensuring the data center is operating as intended or else 
immediately alerting the operator.

Taking it a step further, auto-remediation agents can be provided as additional capabilities over time.

In each of these “applications,” the distributed infrastructure is providing the same efficient 
communication, distributed state access and replication, fault-tolerant recovery, scheduling and 
security, and thus a unified response to the key distributed system challenges of failures, overloads, 
scalability, and extensibility.

Building on this foundation, we are confident that AOS is positioned to not just handle these key 
distributed system challenges, but to exploit the potential of a high distributed solution in achieving 
industry-leading fine-grain telemetry, availability, and feature velocity, the latter not only by our own 
innovation, but also by empowering our customers.

www.apstra.com, @ApstraInc, and for more information, contact us at info@apstra.com

In each of these “applications,” 

the distributed infrastructure 

is providing the same efficient 

communication, distributed 

state access and replication, 

fault-tolerant recovery, 

scheduling and security, and 

thus a unified response to 

the key distributed system 

challenges of failures, 

overloads, scalability, and 

extensibility.

http://www.apstra.com
mailto:info%40apstra.com?subject=

